PREPARATION AND STEREOCHEMISTRY OF 1, 4, 8, 11TETRAAZAPERHYDROPYRENE DERIVATIVES FROM N,N'-BIS(3-AMINOPROPYL)ETHYLENEDIAMINE

Tadashi Okawara*, Hisashi Takaishi, Yoshinari Okamoto, Tetsuo Yamasaki, and Mitsuru Furukawa

Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-hon-machi, Kumamoto 862, Japan

Abstract

The reaction of $\mathrm{N}, \mathrm{N}^{\prime}$-bis(3-aminopropyl)ethylenediamine (1) with glyoxal (2) in the presence of benzotriazole (3) afforded dibenzotriazoyltetraazaperhydropyrene (4), which was converted to polyazapolycycles (6), (13), (15), (16), and (19). The stereochemistry is discussed.

The reaction of linear and cyclic polyamines with glyoxal afforded a variety of bicycles, tricycles, tetracycles, and cage compounds in onepot reactions. ${ }^{1-10}$ Their stereochemistries were fully examined by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-nmr spectroscopy.
In a continuation of our work on the reaction of polyfunctionalized compounds with dialdehydes,11-13 we tried to apply Katritzky's method ${ }^{14-16}$ using benzotriazole (3) to the reaction of N, N^{\prime}-bis (3-aminopropyl)ethylenediamine (1) with glyoxal (2) (Scheme 1). The reaction of 1 with two equivalent of 2 and 3 was carried out in EtOH at room temperature to give dibenzotriazoyltetraazaperhydropyrene (4) in 80% yield. The mass spectrum of 4 showed a molecular ion peak at $m / z 456$ which represented the loss of two molecules of $\mathrm{H}_{2} \mathrm{O}$ from the sum of 1, and two equivalents of 2 and 3 . The ${ }^{13} \mathrm{C}-\mathrm{nm}$ spectrum exhibited one half of the total number of carbons (24 carbons) indicating a C_{2} symmetry axis. In the ${ }^{1} \mathrm{H}-\mathrm{nm}$ spectrum, two methine hydrogens appeared at $\delta 3.05$ and 5.80 ppm . Another plausible structure (5) was eliminated, since this would exhibit 13 carbons in ${ }^{13} \mathrm{C}-\mathrm{nm}$ spectrum.
Compound (4) was hydrogenolyzed with NaBH_{4} in THF for removal of two molecules of 3 to give trans and cis tetraazaperhydropyrene (6a) and (6b) in 50 and 3% yields, respectively. In the ${ }^{13} \mathrm{C}$-nmx spectra the

11

Scheme 1

trans fused 6aa
AM1 $\Delta H f 44.17 \mathrm{Kcal} / \mathrm{mol}$

cis-trans fused 6ab
$39.17 \mathrm{Kcal} / \mathrm{mol}$

cis fused $\mathbf{6 b}$
$35.82 \mathrm{Kcal} / \mathrm{mol}$

trans fused 7aa
AM1 $\quad \Delta \mathrm{Hf} \quad-77.81 \mathrm{Kcal} / \mathrm{mol}$
MM2 $\quad \Delta \mathrm{Hs} \quad 19.56 \mathrm{Kcal} / \mathrm{mol}$

$-71.83 \mathrm{Kcal} / \mathrm{mol}$
$27.04 \mathrm{Kcal} / \mathrm{mol}$

cis fused 7b
$-73.62 \mathrm{Kcal} / \mathrm{mol}$
$24.19 \mathrm{Kcal} / \mathrm{mol}$

6

7

Figure 1 Heats of Formations for Tetraazaperhydropyrene (6) and Perhydropyrene (7)
trans compound (6a) showed four carbon signals at $\delta 24.3,52.8,54.2$, and 83.7 ppm having two C_{2} symmetry axes, while the cis compound (6b) indicated six carbons with a single C_{2} symmetry axis. The ${ }^{1} \mathrm{H}-\mathrm{nm} \mathrm{m}$ spectra of 6a and 6b indicated methine hydrogens at $\delta 2.14$ and 3.00 ppm, respectively. This shift difference (0.86 ppm) could be attributed to the fact that the hydrogens which are proximal to the lone pair on nitrogen are shifted to lower fields as compared with hydrogens in the opposite direction. 17
Caulkett ${ }^{9}$ reported that the reaction of cyclam (8) with 2 afforded $6 b$ exclusively, the structure of which was determined by x-ray crystallography. Moreover, the trans isomer (6a) has two possible stereoisomers, all trans fused form (6aa) and cis-trans fused form (6ab) as shown in Figure 1. Therefore, in order to study which the most stable form is among three steroisomers (6aa, 6ab and 6b), the heats of formation ($\Delta H f$) were calculated by MOPAC (AM1). Additionally for the three stereoisomers of pyrene (7aa, 7ab, and 7b) which have no nitrogen atom, $\Delta \mathrm{Hf}$ and the steric energy ($\Delta \mathrm{Hs}$) were obtained by AM1 and molecular mechanics (MM2), respectively. The results are summarized in Figure 1. The cis isomer (6b) was more stable than either trans isomer (6aa) or (6ab) by 8.35 and $3.35 \mathrm{Kcal} / \mathrm{mol}$, respectively. Between the two trans isomers, cis-trans fused (6ab) was more stable than all trans fused (6aa). AM1 calculation for pyrene showed that cis 7aa was more stable than either trans 7 ab or cis 7 b by 5.98 and $4.19 \mathrm{Kcal} / \mathrm{mol}$, respectively. The $\Delta H s$ of pyrene as indicated by MM2 showed that trans fused (7aa) is more stable either alternate trans fused (7ab) and cis fused 7 b by 7.48 and $4.63 \mathrm{Kcal} / \mathrm{mol}$, respectively. Comparison of $\Delta \mathrm{Hf}$ values for all three stereoisomers suggested that the reaction of cyclam (8) with glyoxal proceeded exclusively to avoid repulsive lone-pair lone-pair interactions affording cis 6 b . However, the reaction using $\mathbf{3}$ proceeded kinetically to give trans isomer (4), which was presumed to be preferentially hydrogenolyzed yielding the trans isomer (6ab). This simultaneously underwent partial cleavage of the $C-N$ bond to afford the thermodynamically more stable cis isomer (6 b). 2,2-Bis(hexahydropyrimidine) (9) ${ }^{18}$ was similarly treated with 2 and 3 to give tetrabenzotriazolyltetraazaperhydropyrene (10) which underwent hydrogenolysis yielding compounds (6a) and (6b) in the ratio of $3: 2$.
Compound (6a) was quarternarized with $\mathrm{CH}_{3} \mathrm{I}$ in CHCl_{3} to produce the dimethylamonium diiodide (11) whose structure was determined

14

16

17

Scheme 2
spectrally.
Next, the reaction of 4 with ethylenediamine (12) was carried out in refluxing EtOH to afford hexaazapentacycle (13) in 11% yield (Scheme 2). The ir spectrum showed NH absorption at $3220 \mathrm{~cm}^{-1}$ and the mass spectrum indicated a molecular ion peak at $m / z 279$. The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed seven carbon signals at $\delta 24.0,46.8,48.2,53.1,54.6,78.6$, and 82.6 ppm which indicated a C_{2} axis of symmetry. The methylene hydrogens at the 1 -position appeared at 1.7 and 3.7 ppm , respectively. This large shift difference (2.0 ppm) is attributed to the direct influence of the nitrogen lone-pair at the 3 -position on an axial hydrogen by assuming a stereochemistry having the cis-trans fused form (14) similar to the results of 4 and 6 . Compound (4) was heated with ammonia in a sealed cylinder to give decaazanonacycle (15) and tetraazapyren-5-one (16) in 34 and 28% yields, respectively. The Fab-Mass spectrum of 15 indicated a molecular ion at $469\left(\mathrm{M}^{+}-2\right)$. The ir spectrum showed NH absorptions at 3350 and $3320 \mathrm{~cm}^{-1}$. The ${ }^{13} \mathrm{C}-\mathrm{nm}$ spectrum showed eight methine carbon signals at $\delta 70.5,71.6,74.2,77.0,78.8,82.7,82.8$, and 83.3 ppm indicating the absence of an axis of symmetry. This suggested that the cis-trans fused intermediate (17) coupled with 4 to yield 15 which had a slightly twisted central piperazine ring. Compound (16) showed carbonyl absorption at $1660 \mathrm{~cm}^{-1}$ in ir spectrum and twelve carbons in the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum. It was assumed to form via the enamine intermediate (18) which was hydrolyzed on work-up to give 16. Heating of 4 in a methanolic KOH solution easily led to 16 in 65 \% yield. Compound (4) was treated with KCN in MeOH at $50-60^{\circ} \mathrm{C}$ to give dicyano compound (19) or alternatively refluxed in MeOH to produce monocyano compound (20). Compound (19) was converted into 20 by refluxing in MeOH . The stereochemistry of 19 was assigned as the cis-trans fused form based on the one half number of carbon atoms in the ${ }^{13} \mathrm{C}-\mathrm{nm}$ spectrum.
The authors acknowledge Dr. K. Harano for AM1 and MM2 calculation.

EXPERIMENTAL

Melting points were determined with a Yanagimoto micro melting point apparatus and are corrected. Ir spectra were recorded with a JASCO IRA-1 grating spectrometer. Nmr spectra were measured with a JEOL spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and at 100 MHz for ${ }^{13} \mathrm{C}$ using a JEOL JNM-GX400 spectrometer. Mass spectra were obtained with a JEOL JMS DX303 mass spectrometer. Calculations of AM1 from MOPAC and MM2 were
performed on the FACOM M-780 computer in Kumamoto University.
5,6-Dibenzotriazoy1-4,7,11,14-tetraazaperhydropyrene (4)-----To a solution of $\mathrm{N}, \mathrm{N}^{\prime}$-bis(3-aminopropyl)ethylenediamine (1) (100 mmol, 18.3 ml) and benzotriazole (3) ($200 \mathrm{mmol}, 23.8 \mathrm{~g}$) in EtOH (100 ml) was added slowly glyoxal (2) ($40 \% \mathrm{w} / \mathrm{v}$ in water, $200 \mathrm{mmol}, 29 \mathrm{ml}$) under cooling with ice and water. After the addition was over, the reaction mixture was stirred for 12 h at room temperature. The separated crystals were collected by filtration and washed with ethanol. mp $178-179^{\circ} \mathrm{C}$ (from EtOH); Yield $36.5 \mathrm{~g}(80 \%)$; ir (KBr) $v 1615(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, TMS) $\delta 1.48-1.51(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 1.80-1.90(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \underset{\mathrm{H}}{ } \mathrm{C} 2), 2.07-2.13$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2$), $2.24-2.28(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 2.29-2.32(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2)$, $2.70(2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=8.1 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=8.1 \mathrm{~Hz}), 3.00-3.03$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 3.05(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2), 5.80(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2), 7.34-8.00(8 \mathrm{H}$, $\mathrm{m}, \mathrm{Phx} 2$); ${ }^{13} \mathrm{C}-\mathrm{nmx}$ ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 23.6$ (CCC), 49.5 (CCN), 52.9 (CCN), 54.0 (NCC) , 77.8 (NCBL), 81.8 (NCN), 111.3, 120.4, 124.5, 128.0, 131.3, 146.5 (Ph); ms (EI) m/z 456 ($\mathrm{M}^{+}, 10$), 337 (47), 309 (100), 219 (80), 199 (75), 119 (60); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{10}$: C, 63.13; H,6.18; N, 30.67. Found: C, 63.27; H,6.40; N, 30.34.
4,7,11,14-Tetraazaperhydropyrene (6)-----To a suspended solution of 4 ($5 \mathrm{mmol}, 2.28 \mathrm{~g}$) in THF (60 ml) was added sodium borohydride (15 ml , 0.60 g) under cooling with ice and water. The reaction mixture was refluxed for 12 h . Water (20 ml) was added and the solvent was evaporated under reduced pressure. To the resulting residue was added 1 N $\mathrm{NaOH}(15 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{mlx} 5)$. The combined extract was dried over MgSO_{4} and evaporated under reduced pressure. The residue was purified by a silica gel column chromatography ($\mathrm{CHCl}_{3}: \mathrm{MeOH}=8: 1$). 6a: mp $130-131^{\circ} \mathrm{C}$; Yield $0.56 \mathrm{~g}(50 \%) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.51-1.56$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 1.90-2.01(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH} 2), 2.03-2.10(4 \mathrm{H}, \mathrm{m}, \mathrm{CHH} 4)$, $2.14(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2), 2.39-2.47(4 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 4), 2.63-2.72(4 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 4)$, $2.85-2.89(4 \mathrm{H}, \mathrm{m}, \mathrm{CHH} \mathrm{\times 4}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 24.3(\mathrm{CCC}), 52.8(\mathrm{CCN})$, 54.2 (NCC), 83.7 (NCN) ; ms (CI): m/z 223 ($\mathrm{M}^{+}+1,100$); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{4}: \mathrm{C}, 64.83 ; \mathrm{H}, 9.97$; $\mathrm{N}, 25.20$. Found: C, 64.87 ; $\mathrm{H}, 9.95$; $\mathrm{N}, 24.86$.
6b: oil; Yield $0.03 \mathrm{~g}(3 \%) ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 0.91-1.50(2 \mathrm{H}, \mathrm{m})$, $1.73-3.87(18 \mathrm{H}, \mathrm{m}), 3.00(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 19.6$ (CCC), $44.8(\mathrm{CCN}), 52.6$ (NCC), 54.4 (NCC), 56.1 (CCN), 77.1 (NCN). (lit. ${ }^{19} \delta$ 19.7 (CCC), 44.9 (CCN), 52.6 (NCC), 54.5 (NCC), 56.1 (CCN), 77.1 (NCN)); HRms (EI) m / z Found 222.183. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{4} 222.184$.
5,6,12,13-Tetrabenzotriazoly1-4,7,11,14-tetraazaperhydropyrene (10)-.-To a stirred solution of 2,2 '-bis (hexahydropyrimidine) (8) (21.2 mmol ,
3.6 g) in EtOH (60 ml) was added benzotriazole (3) ($84.7 \mathrm{mmol}, 10.2 \mathrm{~g}$) followed by gradual addition of glyoxal (2) ($40 \% \mathrm{w} / \mathrm{v}$ in water, 42.4 mmol, 6.14 ml) under cooling with ice and water. The reaction mixture was stirred for 12 h at room temperature. The separated solid was collected by filtration, washed with EtOH, and recrystallized from EtOH. $\mathrm{mp} 196^{\circ} \mathrm{C}$ (decomp.); Yield 7.72 g (53\%); ir (KBr) v $1620(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ms (CI) $\mathrm{m} / \mathrm{z} 689$ ($\mathrm{M}^{+}-2,18$), 361 (27), 334 (100), 315 (28). Anal. Calcd for $\mathrm{C}_{3} 6 \mathrm{H}_{3} 4 \mathrm{~N} 16: \mathrm{C} ; 62.60$; $\mathrm{H}, 4.96$; $\mathrm{N} ; 32.44$. Found: $\mathrm{C}, 62.93 ; \mathrm{H}, 5.08$; N , 32.10 .

4,11-Dimethyl-4,7,11,14-tetraazaperhydropyrenium diiodide (11)-----A solution of $6 \mathrm{a}(3 \mathrm{mmol}, 0.66 \mathrm{~g})$ and $\mathrm{CH}_{3} \mathrm{I}(30 \mathrm{mmol}, 3.6 \mathrm{ml})$ in $\mathrm{CHCl}_{3}(30$ ml) was stirred for 12 h at $60^{\circ} \mathrm{C}$ in a sealed cylinder. The separated solid was collected by filtration and recrystallized from EtOH-water. $m p 225^{\circ} \mathrm{C}$ (decomp.); Yield $1.02 \mathrm{~g}(678)$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.37-2.40$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHH} \times 2$), 2.76-2.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx}$) , $3.18-3.25(2 \mathrm{H}, \mathrm{dt}, \mathrm{CHHx} 2$, $\mathrm{J}=4.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}), 3.54-3.67(4 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2$ and CHHx 2$), 3.73(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \times 2\right), 3.77-3.80(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 3.94-4.02(2 \mathrm{H}, \mathrm{dt}, \mathrm{CHHx} 2, \mathrm{~J}=3.7 \mathrm{~Hz}$, $13.2 \mathrm{~Hz}), 4.11-4.21\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H} \times 2\right.$ and $\left.\mathrm{CH}_{2} \mathrm{x} 2\right), 4.63(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2)$; ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 20.9$ (CCC), $41.3\left(\mathrm{NCH}_{3}\right), 47.8$ (CCN), 54.1 (NCC), 61.6(NCC), 67.8 (CCN), 81.9 (NCN); ms (FAB) m/z 251 ($\mathrm{M}^{+}+1,17$), 169 (27), 85 (100); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{2} 8^{2} \mathrm{~N}_{4} \mathrm{I}_{2}: \mathrm{C}, 33.22$; $\mathrm{H}, 5.58$; $\mathrm{N}, 11.07$. Found: C,32.40; H,5.55; N,10.86.
Piperidino[2,3-e]-4,7,11,14-tetraazaperhydropyrene (13)-----To a suspended solution of $4(5 \mathrm{mmol}, 2.28 \mathrm{~g})$ in $\mathrm{CHCl}_{3}(60 \mathrm{ml})$ was gradually added ethylenediamine (12) ($5 \mathrm{mmol}, 0.33 \mathrm{ml}$) with stirring at room temperature, then the reaction mixture was refluxed for 12 h . After removal of the CHCl_{3}, the resulting residue was solidified by treatment with a small amount of EtOH-i- $\mathrm{Pr}_{2} \mathrm{O}$. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) and removed unreacted benzotriazole (3) with $1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{ml}$). The NaOH solution was saturated with NaCl and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($15 \mathrm{mlx5}$). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried over MgSO_{4}. Removal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a solid which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$. mp $245^{\circ} \mathrm{C}$; Yield 0.15 g (11\%); ir (KBr) $v 3220(\mathrm{NH}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, TMS) $\delta 1.57-1.62(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 1.67-1.79(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 1.80-1.92$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2$), $2.04-2.14(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH} \mathrm{C} 2), 2.18(2 \mathrm{H}, \mathrm{s}, \mathrm{NHx} 2), 2.41(2 \mathrm{H}$, s, CHx2), $2.44(2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=7.6 \mathrm{~Hz}), 2.62(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2), 2.63(2 \mathrm{H}$, $\mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=9.9 \mathrm{~Hz}), 2.70(2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=7.6 \mathrm{~Hz}), 2.87-2.91(2 \mathrm{H}, \mathrm{m}$, CHHx2), 3.01 ($2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=9.9 \mathrm{~Hz}$), $3.73-3.77(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2)$; ${ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 24.0$ (CCC), 46.8 (NCC), 48.2 (CCN), 53.1 (CCN),
54.6 (NCC), 78.6 (NCN), $82.6(N C N) ; \mathrm{ms}(C I) m / z 279\left(\mathrm{M}^{+}+1,100\right), 195$ (20); Anal. Calcd for $\mathrm{C}_{1} 4 \mathrm{H}_{2} 6 \mathrm{~N} 6: \mathrm{C}, 60.40$; $\mathrm{H}, 9.41$; $\mathrm{N}, 30.19$. Found: C , 60.17; H,9.41; N, 29.91.

Tetrabenzo[de, jk, op, uv] - $1,4,5,6,7,8,11,12,13,14$-decaazaperhydropentacene (15) and 4,7,11,14-tetraazaperhydropyren-5-one (16)-----A solution of $4(2 \mathrm{mmol}, 0.91 \mathrm{~g})$ in saturated methanolic ammonia (40 ml) was stirred for 12 h at $70^{\circ} \mathrm{C}$ in a sealed cylinder. After removal of the solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ and benzotriazole (3) was removed by washing with $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(15} \mathrm{ml)}$. was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{mlx} 4)$. The combined extract was dried over MgSO_{4}. After removal of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the residue was purified by a silica-gel column chromatography ($\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1$). The fractions containing 15 was evaporated and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$.
15: mp $190^{\circ} \mathrm{C}$ (decomp.); Yield 0.15 g (34\%); ir (KBr) v 3320, 3250 (NH) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmx}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.55-1.61(4 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 4), 1.66-1.75$ (4H, m, CHHx2 and NHx2), $1.88(4 \mathrm{H}, \mathrm{t}, \mathrm{CHHx} 4, \mathrm{~J}=12.2 \mathrm{~Hz}), 1.99-2.07(4 \mathrm{H}, \mathrm{m}$, CHHx4), 2.28-2.35 (3H, m, CHx3), 2.38-2.49 (4H, m, CHHx4), 2.60 (2H, d, $\mathrm{CHx} 2, \mathrm{~J}=6.9 \mathrm{~Hz}), 2.69-2.71(6 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2$ and CHHx 4$), 2.86-3.08(6 \mathrm{H}, \mathrm{m}$, CHHx5 and CH$), 3.18(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}, \mathrm{J}=2.3 \mathrm{~Hz}), 3.59-3.62(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}$ and $\mathrm{CH}), 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{CHH}, \mathrm{J}=10.9 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{d}, \mathrm{CHH}, \mathrm{J}=12.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{nmx}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 23.9,24.0,24.4$ (CCC), 47.8, 48.1, 48.5, 48.6, $52.9,53.6,53.2,53.9,54.3,54.6(\mathrm{CCN}), 70.5,71.6,74.2,77.0,78.8$, 82.7, 82.8, 83.3 (NCN); ms (FAB) m/z $469\left(\mathrm{M}^{+}+1,65\right), 275$ (25), 234 (78), 220 (100), 195 (55), 152 (42); Anal. Calcd for $\mathrm{C}_{2} 4 \mathrm{H}_{4} \mathrm{~N}_{10} \mathrm{H}_{2} \mathrm{O}$: $\mathrm{C}, 58.99 ; \mathrm{H}, 9.08 ; \mathrm{N}, 28.66$. Found: $\mathrm{C}, 59.35 ; \mathrm{H}, 8.96 ; \mathrm{N}, 28.69$. 16: oil; Yield 0.13 g (28\%); ir (KBr) v 1660 ($\mathrm{C=O}$) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, TMS) $\delta 1.64-1.69(2 H, m, C H H x 2), 1.75-1.79(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.93-1.96$ (2H, m, CHH and $\mathrm{CH} \underline{H}), 2.08-2.24(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 2.41-2.52(3 \mathrm{H}, \mathrm{m}, \mathrm{CHH} \times 3)$, $2.45(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.77-2.95(5 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 5), 2.89(1 \mathrm{H}, \mathrm{d}, \mathrm{CH} \mathrm{H}$, $J=16.5 H \mathrm{z}), 3.36(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{d}, \mathrm{CHH}, \mathrm{J}=16.5 \mathrm{~Hz})$, 4.61-4.66 (1H, m, CHH$) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 23.3,23.9(\mathrm{CCC}), 3.96$, $52.8,53.0,53.1,53.4(\mathrm{CCN}), 57.5(\mathrm{NCC}=0), 77.8,81.6(\mathrm{NCN}), 165.6$ ($\mathrm{C}=0$) ; HRms (CI) ($\mathrm{M}+1$): m / z Found 237.1715. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}$ 237.1694; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{ON}_{4} \mathrm{O}: \mathrm{C}, 60.99 ; \mathrm{H}, 8.53 ; \mathrm{N}, 23.71$. Found: C, 60.75; H,8.34; N; 23.99.
Compound (16) by treatment of 4 with methanolic NaOH solution-----A suspended solution of 4 (2 mmol, 0.91 g) in saturated methanolic NaOH solution (50 ml) was refluxed for 10 h . After removal of MeOH , water
$(20 \mathrm{ml})$ was added to the residue and the resulting product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml} \times 3)$. The combined extract was dried over MgSO_{4}, evaporated under reduced pressure, and the residue was purified by the same work up mentioned above to give 16 in 65 \% yield. The product was identified with the spectral data of 16 .
5,6-Dicyano-4,7,11,14-tetraazaperhydropyrene (19)-----A suspended solution of 4 ($5 \mathrm{mmol}, 2.28 \mathrm{~g}$) and KCN ($10 \mathrm{mmol}, 0.65 \mathrm{~g}$) in EtOH (60 ml) was refluxed for 12 h . After addition of $1 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{ml})$ to the reaction mixture, EtOH was evaporated, and the remaining solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($15 \mathrm{mlx5}$). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried over MgSO_{4} and evaporated under reduced pressure. The residue was purified by a silica gel column chromatography ($\mathrm{CHCl}_{3}: \mathrm{MeOH}=15: 1$). mp $116-119^{\circ} \mathrm{C}$; Yield $0.76 \mathrm{~g}(56 \%)$; ir (KBr) v $2220,2180(\mathrm{CN}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}$ ($\mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.54-1.59(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 1.85-1.98(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH} \times 2)$, $2.01-2.09(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 2.40(2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=7.9 \mathrm{~Hz}), 2.43-2.49(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CHHx} 2), 2.54(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2), 2.64(2 \mathrm{H}, \mathrm{d}, \mathrm{CHHx} 2, \mathrm{~J}=7.9 \mathrm{~Hz}), 2.76-2.81$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{CHH} \mathrm{C} 4), 3.92(2 \mathrm{H}, \mathrm{s}, \mathrm{CHx} 2) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta .23 .6$ (CCC), 51.4 (CCN), 52.7 (CCN), 53.0 (NCC), 54.9 (NCCN), 79.0 (NCN), 113.6 (CN); ms (EI) m/z 272 ($\mathrm{M}^{+}, 68$), 195 (42), 112 (38), 97 (100); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.91 ; \mathrm{H}, 7.64$; $\mathrm{N}, 28.94$. Found: C,57.95; H , 7.43; N, 28.97.

5-Cyano-4, 7,11,14-tetraaza-1,2,3,4,4a,7,7a,8,9,10,11,12,13,14-tetradecahydropyrene (20)-----The reaction was carried out under reflux for 12 h by the method described above. The residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{i}-\mathrm{Pr}_{2} \mathrm{O}$. mp $143-144^{\circ} \mathrm{C}$; Yield 0.77 g (63%); ir (KBr) v 2200 (CN), $1640(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.59-1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 1.85-$ $1.96(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 2.11-2.22(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 2), 2.43-2.57(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 3)$, $2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}, \mathrm{J}=5.9 \mathrm{~Hz}), 2.74-2.97(5 \mathrm{H}, \mathrm{m}, \mathrm{CHHx} 1$ and $\mathrm{CHH} \times 4), 3.01$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}, \mathrm{J}=5.9 \mathrm{~Hz}), 3.22-3.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 3.53-3.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $6.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{nmr}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 24.0,24.1$ (CCC), 49.2, 50.0 (CCN), 51.9, 52.3 (CCN), 53.2, 53.7 (NCC), 75.6, 77.7 (NCN), 98.1 (NCCN), 117.4 (CN), 130.1 ($\mathrm{NC}=$); $\mathrm{ms}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 245$ ($\mathrm{M}^{+}+1,100$), 217 (11); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5}: \mathrm{C}, 63.65$; $\mathrm{H}, 7.81$; $\mathrm{N}, 28.55$. Found: $\mathrm{C}, 63.77$; H , 7.89; N,28.43.

REFERENCES

1. M. R. Crampton, J. Hamid, R. Millar, and G. Ferguson, J. Chem. Soc., Perkin Trans. 2, 1993, 923.
2. D. C. Craig, M. Kassiou, and R. W. Read, J. Chem. Soc., Chem.

Commun., 1991, 607.
3. D. S. Black, M. Kassiou, and R. W. Read, J. Org. Chem., 1991, 56, 4308.
4. A. T. Nielsen, R. A. Nissan, D. J. Vanderah, C. L. Coon, R. D. Gilardi, C. F. George, and J. F. Anderson, J. Org. Chem., 1990, 55, 1459.
5. R. L. Willer, D. W. Moore, and D. J. Vanderah, J. Org. Chem., 1985, 50, 2365.
6. R. L. Willer, D. W. Moore, C. K. Lowe-Ma, and D. J. Vanderah, J. Org. Chem., 1985, 50, 2368.
7. B. Fuchs, S. Weinman, U. Schmueli, A. R. Katritzky, and R. C. Patel, Tetrahedron Lett., 1981, 22, 354.
8. G. R. Weisman, S. C. H. Ho, and V. Johnson, Tetrahedron Lett., 1980, 21, 335.
9. P. W. R. Caulkett, D. Greatbanks, R. W. Turner, and J. A. J.Jarvis, J. Chem. Soc., Chem. Commun., 1977, 150.
10. I. J. Ferguson, A. R. Katritzky, and R. Patel, J. Chem. Soc., Perkin Trans. 2, 1976, 1564.
11. T. Okawara, S. Ehara, M. Eto, K. Harano, and M. Furukawa, Tetrahedron Lett., 1993, 34, 4231.
12. T. Okawara, K. Uchiyama, Y. Okamoto, T. Yamasaki, and M. Furukawa, J. Chem. Soc., Chem. Commun., 1990, 1385.
13. T. Okawara, S. Ehara, S. Matsumoto, Y. Okamoto, T. Yamasaki, and M. Furukawa, J. Chem. Soc., Perkin Trans. I, 1990, 2615.
14. A. R. Katritzky and W. Q. Fan, J. Org. Chem., 1990, 55, 3205.
15. A. R. Katritzky, W. Q. Fan, and C. Fu, J. Org. Chem., 1990, 55, 3209.
16. A. R. Katritzky, L. Urogdi, and A. Mayence, J. Chem. Soc., Chem. Commun., 1989, 337.
17. G. R. Weisman, V. Johnson, and R. E. Fiala, Tetrahedron Lett., 1980, 21, 3635.
18. D. S. Black, D. C. Craig, O. Giitsidis, R. W. Read, A. Salek, and M. A. Sefton, J. Org. Chem., 1991, 56, 4308.
19. H. Yamamoto and K. Maruoka, J. Am. Chem. Soc., 1981, 103, 4186.

